Course Type	Course Code	Name of Course	L	T	P	Credit
DC	NGPC516	Mathematical Functional	3	0	0	3
		Analysis				

Course Objective

The primary objective of the course is to introduce fundamental and advanced aspects of time series analysis techniques for geo-record analysis and processing.

Learning Outcomes

Upon successful completion of this course, students will:

- have practical knowledge on geophysical/geological time/space series data analysis.
- have practical knowledge on periodicity, how to design a filter, algorithm for signal enhancement and noise removal.
- have Practical knowledge on signal processing techniques for exploration of geoscience.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
	Introduction: Signal and System: Basic theory and introduction to signal and system, types of signals; Classification of signals, continuous and discrete signals. Types of noises; Energy and phase spectra, properties of time signal (time invariance, causality, linearity). Time series analysis: Auto regressive (AR), Moving average		Understanding basic definitions and techniques for time series analysis
1	(MA) and Autoregressive moving average (ARMA) processes; Probability theory, Discrete, continuous and mixed random variables, probability density function, cumulative density function, notions of stationarity, ergodicity.	9	
2	Data analysis: Fourier transforms, Fourier transforms of some commonly used functions, utility of domain transformation; Inverse Fourier transform; Use of one and two dimensional Fourier transforms in solving geophysical problems, Hankel transform and Hilbert transforms, their properties, the concept of analytic signal and its use in geophysics; Z transforms, inverse Z transform; Discrete Fourier transform and Fast Fourier transforms; Discretization of continuous signals, sampling theorem, aliasing; reconstruction of a signal from its samples-Gibb's phenomenon. Walsh transform and applications in geophysics; Wavelet transform and their applications in geophysics. Singular spectrum analysis (SSA) in geophysics.	9	Analysis and interpretation of complex signals and their application in geophysics

3	processing of random geophysical signals. Earth as a low pass filter.	7	interpret geophysical signals
4	Digital filters: Basic concepts, types of filters, ideal filters; Martin Graham, Butterworth and Chebyshev filters. Inverse filtering: Wiener filters, de-convolution-predictive and homomorphic, cepstral analysis.	6	Learning to identify relevant information from noisy signals
5	Processing of random signals. Power Spectrum Analysis: Power Spectrum Estimation; Periodogram, Maximum likelihood method (MLM) and maximum entropy method (MEM).	4	Interpretation of complex signals and representation
6	Applications: Signal enhancement for gravity and magnetic maps: regional and residual separation, continuations, calculation of derivatives, pseudo gravity transformations, reduction to poles and equator. Removal of shot generated noise- de-ghosting and dereverberation.	7	Familiarization with practical geophysical signal analysis
	Total:	42	

Text Books

- 1. Bath, M., 1974. Spectral Analysis in Geophysics. Elsevier, Amsterdam, Netherlands.
- 2. Gubbins D., 2004, Time series analysis and inverse theory for geophysicists, Cambridge University Press.

Reference Books

- 1. Baskakov, S. 1986, Signals and Circuits, Mir Publishers
- 2. Beauchamp, K.G., 1975. Walsh Functions and their Applications. Academic Press, New York, NY 236pp.
- 3. Blakeiy, Richard J., 1995, Potential Theory in Gravity and Magnetic Applications, Cambridge University Press.
- 4. Dimri, V. P., 1992, Deconvolution and Inverse Theory: Applications to Geophysical Problems, Elsevier Science.
- 5. Kanasewich, E. R., 1975, Time Sequence Analysis in Geophysics, The University of Alberta Press
- 6. Naidu, P. S., and Mathur, M. P., 2012, Analysis of Geophysical Potential Field: A Digital Signal Processing Approach: Elsevier
- 7. Robinson, E. A., 1967, Statistical communication detection with special reference to digital data processing of radar and seismic signal: GriffIn
- 8. Robinson, E. A., 1981, 'Time Series Analysis and Application: D. Reidel Yilmaz, 0. Seismic Data Processing, Society of Exploration Geophysicists.
- 9. Yilmaz, O., Seismic data processing, Society of Exploration Geophysicists